•   OUTLINE Introduction A generalization to infinite dimension Is there any relationship between an infinite-dimensional manifold and a finite-dimensional manifold? Manifolds in applications Infection dynamics Topological data analysis Riemannian manifold optimization software library   SUMMARY: We define a manifold of an infinite dimension, which is an extension of a finite-dimensional manifold, and we show in what sense an infinite-dimensional manifold is related to any finite-dimensional manifold. We then mention the use of manifolds in applications. Introduction Given any point $x$ on the surface of a sphere and any circle drawn around $x$, the region inside the circle approaches the shape of a 2-dimensional flat'' disk as the circle gets smaller. The…
•   OUTLINE Introduction Definitions Directed Graphs Infinite Chains (Def. 1 & Def. 2) When are Def. 1 and Def. 2 equivalent? A fix with the axiom of countable choice Directed Graphs in Applications Softwares Graph Neural Networks Quantum Information   SUMMARY: We introduce two notions of an infinite chain in a directed graph, and we show when these two notions are equivalent. We then mention the use of directed graphs in applications, such as artificial intelligence and quantum information. Introduction Consider this diagram $\begin{array}{ccccc} \bullet & \rightarrow & \bullet\\ \downarrow & & \downarrow\\ \bullet & \rightarrow & \bullet & \rightarrow & \bullet \end{array}$ which consists of vertices (the dots)…
•   OUTLINE Introduction General Definition The tensor product is not the same as the Cartesian product A jump to categories Applications TensorFlow Artificial Intelligence Quantum Optics   SUMMARY: We show why the tensor product is not the same as the Cartesian product, and we extend that result to categories. We then mention the use of the tensor product in applications, such as artificial intelligence and quantum optics. Introduction For any vectors $\left\langle x_{1},x_{2}\right\rangle$ of $\mathbb{R}^{2}$ and $\left\langle y_{1},y_{2},y_{3}\right\rangle$ of $\mathbb{R}^{3}$, a product of these two vectors, which is denoted as $\left\langle x_{1},x_{2}\right\rangle \otimes\left\langle y_{1},y_{2},y_{3}\right\rangle$, is defined as the matrix \[ \left[\begin{array}{ccc} x_{1}y_{1} & x_{1}y_{2} & x_{1}y_{_{3}}\\ x_{2}y_{1} &…